Acid/Base Chemistry: Laboratory Notebook

University of Oregon

Name: \qquad
Date: \qquad
Favorite Element:

MYhat are Ecids and Bases?

Before discussing acids and bases, let's talk about water!
All substances are made up of millions of tiny atoms. These atoms form small groups called molecules. In water, for example, each molecule is made up of two hydrogen atoms and one oxygen atom. The formula for a molecule of water is $\mathrm{H}_{2} \mathrm{O}$. "H" means hydrogen, "2" means 2 hydrogen atoms, and the " O " means oxygen.

$$
\mathrm{H}_{2} \mathrm{O}=\mathbf{H}^{-} \mathbf{O} \cdot \mathbf{H}=\text { a water molecule }=Q
$$

When things are added to water and dissolve, they form a solution.

Something solvated

We know something is an acid by the way it reacts with water. When an acid is poured into water, it gives up H (hydrogen) to the water.

When a base is poured into water, it gives up OH (hydroxide) to the water, usually by stealing a Hydrogen (H) from the water.

So, something that is acidic has lots of extra $\mathrm{H}_{3} \mathrm{O}^{+}$floating around in solution. Something that is basic has lots of extra OH^{-}floating around in solution. OH^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$react very differently to other chemicals, so knowing whether you have an acid or base is important.

The pH Scale

\Rightarrow The pH scale is a measure of the hydronium ion concentration $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
\Rightarrow It spans from a pH of $\mathbf{0}$ (very acidic, lots of $\mathrm{H}_{3} \mathrm{O}^{+}$) to a $\mathbf{p H}$ of $\mathbf{1 4}$ (very basic, lots of OH -).
\Rightarrow If something is neither an acid nor a base, it is called neutral, it has a $\mathbf{p H}$ of 7 , or the middle of the pH scale.

So, any pH number greater than 7 is considered a base and any pH number less than 7 is considered an acid. 0 is the strongest acid and 14 is the strongest base.

An indicator is a special type of compound that changes color as the pH of a solution changes, thus telling us the pH of the solution. This is how scientists like you can tell whether something is an acid or a base

Experiment 1: pH of Common Chemicals

Objective: Use pH strips to see if you can tell whether each house-hold chemical is an acid, a base, or neither (neutral).

Instructions:

- Tear up a pH strip into smaller squares.
- For each household chemical, add a few drops or a small amount into a plastic beaker and fill half way with water. Mix lightly.
- Take one drop and place it on a small square of pH strip.
- Use the color change to determine what the pH of the chemical is.
- Record your observations in the table below:

Common Chemical	Color of pH strip	Acid, Base, or Neutral	pH
Water			
Coca-cola			
Soda Water			
Sugar			
Semon Juice			
Baking Soda			
Aspirin			
Wina-seltzer			
Soap (ammonia)			
Milk of Magnesia			
Tums			

Why did we test water first? \qquad
\qquad
\qquad

Which chemicals are acids? \qquad
\qquad
\qquad

Which chemicals are bases? \qquad
\qquad
\qquad

Which chemicals should react? (hint: acids and bases react with each other)

ACID/BASE REACTIONS

How do we use acids and bases?
Chemical Reactions!
A chemical reaction is transformation of one set of chemical substances to another. Chemical reactions can be either spontaneous, requiring no input of energy, or nonspontaneous, requiring energy. Classically, chemical reactions involve the movement of electrons to make and break chemical bonds between atoms!

Chemical reactions are described by chemical equations.

Is it a chemical change or a physical change?
Some changes can be classified as either a chemical or physical change.

- Burning paper is a chemical change
- Tearing paper is a physical change

How can you tell if a chemical reaction has happened?

What happens when an acid and base react?
A proton is transferred from the acid to the base. If the base is water, it is protonated to make the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$.

A neutralization reaction is a reaction in which an acid and a base react to form a salt and water.

What happens when ${ }_{2} \mathrm{~T}_{4}$ - reacts with different bases? Lets Experiment!

$1^{\text {st. }}$ Using a pipet, measure an amount of acid.
To know how much you have measured, look at the markings on the side of the pipet (if they do not align, make your best guess.)
$\mathbf{2}^{\text {nd }}$: Add that amount to your solution of base.
$3^{\text {rd }}$: Look and see if there is an indicator for a chemical reaction.

Base	Color Change	Precipitate	Temperatur e Change	Gas Bubbles
What happened?				
Did a Reaction Happen?				
How much acid did you add before the reaction finished?				

Base Watalat	Color Change	Precipitate	Temperature Change	Gas Bubbles
What happened?				
Did a Reaction Happen?				
How much acid did you add before the reaction finished?				

Base	Color Change	Precipitate	Temperature Change	Gas Bubbles		
What happened?						Did a Reaction Happen?
:---						
How much acid did you add before the reaction finished?						

Base Nata	Color Change	Precipitate	Temperature Change	Gas Bubbles
What happened?				

Base Wa.	Color Change	Precipitate	Temperature Change	Gas Bubbles
What happened?				
Did a Reaction Happen?				
How much acid did you add before the reaction finished?				

Base What happened?	Color Change	Precipitate	Temperature Change	Gas Bubbles
Did a Reaction Happen?				
How much acid did you add before the reaction finished?				

Base	Color Change	Precipitate	Temperature Change	Gas Bubbles
What happened?				
Did a Reaction Happen? How much acid did you add before the reaction finished?				

Carbonate and Carbon dioxide

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is a gas that can be used in several different ways. Today we will be doing two different experiments that explore CO_{2} and acidity!

What is dry ice?

Dry ice is CO_{2} that has been cooled
 until frozen solid. At $-70{ }^{\circ} \mathrm{F}$ (VERY COLD) dry ice sublimes from a solid to a gas!

What are soda bubbles?

Soda bubbles are formed from CO_{2} that has been dissolved in water. The CO_{2} that is dissolved into water reacts with the water to form carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$. This technique is called carbonation!

$$
\underset{\text { GAS WATER }}{\mathrm{CO}_{2}}+\underset{\text { ACID }}{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}_{2} \mathrm{CO}_{3}
$$

What will happen to the pH ?

As more CO_{2} dissolves in the water, it becomes more acidic. Chemicals called buffers can be added to water that help resist acidity changes. Buffers are critical to human life by holding our bodies constant at $\mathrm{pH}=7.4$.

CO 2 EXPERIMENT 1: DRY ICE AND ACIDITY

Purpose: To see how the pH of water changes over time with the addition of dry ice.

Procedure:
 Dry Ice in Normal Water

1. Every 30 seconds put a drop of water on your pH paper using plastic dropper.
2. Write down the color you observe in the table below.
3. After 5 minutes, use the color-coded key to determine the pH at each time.
4. Then plot your data, putting time on the x -axis and pH on the y -axis.

Time (minutes)	Color (Blue, Green, Yellow)	pH
0.0		
0.5		
1.0		
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		
4.5		
5.0		

Dry Ice in Buffered Water

Time (minutes)	Color (Blue, Green, Yellow)	pH
0.0		
0.5		
1.0		
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		
4.5		
5.0		

Results:

Dry Ice in Water

Dry Ice in Buffered Water

C(O2 EXPERIMEN' II: H(OW MUCH ACII)?!

Unknown Concentration of Acid in Vinegar

Trial 1:

Concentration: $0.45 \mathrm{~mol} / \mathrm{L}$
Starting Volume: \qquad
Ending Volume: \qquad
Volume Displaced(Ending volume - starting volume - 10): \qquad

Trial 3:

Concentration: $0.15 \mathrm{~mol} / \mathrm{L}$
Starting Volume: \qquad
Ending Volume: \qquad
Volume Displaced(Ending volume - starting volume - 10): \qquad

Trial 2:

Concentration: $0.23 \mathrm{~mol} / \mathrm{L}$
Starting Volume: \qquad
Ending Volume: \qquad
Volume Displaced(Ending volume - starting volume - 10): \qquad

Trial 4:

Concentration: \qquad
Starting Volume: \qquad
Ending Volume: \qquad
Volume Displaced(Ending volume - starting volume - 10): \qquad

Observations and Notes:

